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CONSPECTUS: Electronically photoexcited dynamics are complicated because there are
so many different relaxation pathways: fluorescence, phosphorescence, radiationless decay,
electon transfer, etc. In practice, to model photoexcited systems is a very difficult enterprise,
requiring accurate and very efficient tools in both electronic structure theory and
nonadiabatic chemical dynamics. Moreover, these theoretical tools are not traditional tools.
On the one hand, the electronic structure tools involve couplings between electonic states
(rather than typical single state energies and gradients). On the other hand, the dynamics
tools involve propagating nuclei on multiple potential energy surfaces (rather than the usual
ground state dynamics).
In this Account, we review recent developments in electronic structure theory as directly
applicable for modeling photoexcited systems. In particular, we focus on how one may
evaluate the couplings between two different electronic states. These couplings come in two
flavors. If we order states energetically, the resulting adiabatic states are coupled via
derivative couplings. Derivative couplings capture how electronic wave functions change as a function of nuclear geometry and can
usually be calculated with straightforward tools from analytic gradient theory. One nuance arises, however, in the context of time-
dependent density functional theory (TD-DFT): how do we evaluate derivative couplings between TD-DFT excited states
(which are tricky, because no wave function is available)? This conundrum was recently solved, and we review the solution
below. We also discuss the solution to a second, pesky problem of origin dependence, whereby the derivative couplings do not
(strictly) satisfy translation variance, which can lead to a lack of momentum conservation.
Apart from adiabatic states, if we order states according to their electronic character, the resulting diabatic states are coupled via
electronic or diabatic couplings. The couplings between diabatic states |ΞA⟩ and |ΞB⟩ are just the simple matrix elements, ⟨ΞA|
H|ΞB⟩. A difficulty arises, however, because constructing exactly diabatic states is formally impossible and constructing quasi-
diabatic states is not unique. To that end, we review recent advances in localized diabatization, which is one approach for
generating adiabatic-to-diabatic (ATD) transformations. We also highlight outstanding questions in the arena of diabatization,
especially how to generate multiple globally stable diabatic surfaces.

1. INTRODUCTION: THE MATRIX ELEMENTS BEHIND
ELECTRONIC RELAXATION

One of the central goals in modern physical chemistry is to
elucidate and quantify pathways for electronic relaxation in
photoactivated molecules. Innumerable experiments in time-
resolved laser chemistry excite molecules or materials with
photons and then probe the state of the system after a time
delay. In a typical UV−vis experiment, after a photon has been
absorbed and the electronic state has been excited, one would
like to know the following: Do the excited electrons stay still or
do they meander in real space, leading to electron transfer
(ET)? Will there be electronic excitation transfer (EET)
between excitons? Is there a relevant pathway for intersystem
crossing to produce a triplet state, with the potential for triplet
energy transfer (TT)? What is the lifetime of the excited
electronic state and where does that energy go?

These questions address the fundamental nature of energy
conversion between systems of many nuclei and electrons and,
from a practical point of view, often cannot be answered
completely using only spectroscopic data, without any
theoretical guidance. Moreover, these questions lie directly at
the intersection of two separate and largely isolated fields in
theoretical chemistry, electronic structure theory and chemical
dynamics. In this Account, we will highlight recent progress
toward understanding electronic relaxation from the perspec-
tive of electronic structure theory, including some results from
our research group. In the applications section, we will focus on
photoexcited intramolecular ET and TT, but the electronic
structure methodology is quite general.
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1.1. An Electronic Structure Theorist’s Best Friend: The
Born−Oppenheimer Approximation

From the perspective of an electronic structure theorist, when
photoexcited electrons relax, they break the Born−Oppen-
heimer approximation. Mathematically, this Born−Oppen-
heimer breakdown is as follows: We begin with the total
Hamiltonian as a function of nuclear (n) and electronic (e)
coordinates, where V stands for potential energy and T stands
for kinetic energy. Following standard nomenclature, r ⃗ denotes
electronic position and R⃗ denotes nuclear position (indexed by
α):

⃗ ⃗ = ⃗ + ⃗ + ⃗ + ⃗
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At this point, the Hamiltonian is partitioned into the nuclear
kinetic energy and everything else (the all inclusive electronic
Hamiltonian, Hel).
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The electronic Hamiltonian is then diagonalized, yielding the
many-body adiabatic electronic states ΦI(r;⃗R⃗) = |ΦI(R⃗)⟩
(labeled by I,J):

⃗ |Φ ⃗ ⟩ = ⃗ |Φ ⃗ ⟩H R R E R R( ) ( ) ( ) ( )I I Iel (2)

Finally, the true nuclear−electronic wave function can be
expanded in the basis of adiabatic electronic eigenstates {ΦI},
yielding:

∑ χΨ ⃗ ⃗ = ⃗ Φ ⃗ ⃗r R R r R( , ) ( ) ( ; )
I
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The set {χI} represents nuclear wave functions moving along
electronic states {ΦI}, respectively. Plugging eq 3 into the
Schrodinger equation, iℏ(∂/(∂t))|ΨTot⟩ = HTot|ΨTot⟩, it is
straightforward to show that
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Intuitively, nuclear wavepackets on different Born−Oppen-
heimer surfaces are coupled together by the matrix elements
d ⃗IJ(R⃗) (the derivative coupling) and gI⃗J(R⃗) (the second
derivative coupling). The derivative coupling (DC), dI⃗J(R⃗), is
important when the electronic character of states ΦI(r;R⃗) and
ΦJ(r;R⃗) change as a function of Rα. Indeed, from the (easily
proved) Hellmann−Feynman theorem,

=
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it is easy to see that the derivative couplings will be large near
avoided crossings and infinite at conical intersections. To
model electronic relaxation, these matrix elements are essential.

1.2. A Chemical Dynamicist’s Best Friend: A Fixed Diabatic
Basis

From the perspective of chemical dynamicists, the adiabatic
electronic basis is awkward because it changes with nuclear
position. From this perspective, a better ansatz is the simple
one:

∑ χΨ ⃗ ⃗ = ̃ ⃗ Ξ ⃗r R R r( , ) ( ) ( )
I

I ITot
(7)

where the diabatic states {ΞI} are independent of nuclear
position and form a static (complete) basis. Plugging eq 7 into
the Schrodinger equation, iℏ(∂/∂t)|ΨTot⟩ = HTot|ΨTot⟩, we now
find
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The matrix elements WIJ (I ≠ J) are called diabatic or
electronic couplings. These couplings reflect the possibility for
electrons or energy to transfer without any nuclear motion
involved. In the case of long-range singlet energy transfer, for
example, these couplings can be calculated with transition
dipoles and Forster theory.1

1.3. Outline

Both perspectives above are valid, and there will be times when
one or the other perspective is most useful (usually one wants
small interstate couplings). An outline of this Account is as
follows. In section 2, we will highlight recent work aimed at
calculating derivative couplings, and in section 3, we will give an
account of recent work to calculate diabatic couplings. We
discuss open questions and future areas for exploration in
section 5.

2. DERIVATIVE COUPLINGS
Derivative couplings have long been the “odd man out” in the
global field of quantum chemistry. On the one hand, there is a
long history in the literature on computing derivative couplings
going back to the early work of Lengsfield and Yarkony.2,3

Yarkony et al. originally derived and implemented the necessary
equations for computing derivative couplings in the context of
multiconfigurational self-consistent field theory (MC-SCF).3

The resulting expressions for derivative coupling are quite
tedious because of the nature of MC-SCF theory: both because
the MCSCF wave functions are rather complicated and because
MC-SCF theory is not invariant to the choice of which
occupied (ijk) and which virtual (abc) orbitals are included in
the active space. The earliest applications were toward
understanding excited state−ground state crossings (which
are essential for determining whether a photoexcited molecule
fluoresces).
On the other hand, despite all of the history above, it is safe

to say that derivative couplings have not been investigated as
thoroughly in the literature as have energy gradients.4 For
quantum chemists interested in molecular structure (as
opposed to interstate dynamics), the derivative couplings are
clearly less important quantities than the gradient or Hessian.
Moreover, because running nonadiabatic dynamics on the f ly
was prohibitively expensive until recently,5−9 historically the
main application of derivative couplings has been the search for
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conical intersections.10−12 And while locating conical inter-
sections yields intuition about nonradiative processes, extract-
ing a rate for electronic relaxation is more complicated. For all
of these reasons, the theory of derivative couplings between
excited states is still evolving in the context of electronic
structure theory.

2.1. Derivative Couplings between Excited States from
Response Theory

For wave function based electronic structure, derivative
couplings can be calculated with standard analytic gradient
theory. For example, configuration interaction singles (CIS)
excited state wave functions13 are just sums of excitations from
occupied orbitals {i} to virtual orbitals {a}: |ΨI

CIS(R⃗)⟩ =
∑iati

Ia|Φi
a⟩. In this case, the derivative coupling is
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Equation 10 can be easily evaluated with analytic gradient
theory.14

An interesting question now arises in the theory of derivative
couplings as related to response theory. Nowadays, most
excited state calculations are run with time-dependent density
functional theory.15−17 Until recently, only ground state−
excited state couplings were easily available and reliable for
time-dependent density functional theory (TD-DFT).18−20

However, for many applications, excited state−excited state
couplings are needed to describe early time photodynamics.
Furthermore, because TD-DFT will find the correct topology
for a conical intersection between two excited states (rather
than between one excited state and the ground state21), the
former derivative couplings are especially valuable. That being
said, computing excited state−excited state couplings is difficult
for TD-DFT22−28 because, as a formal response theory, TD-
DFT never calculates an excited state wave function. Instead,
according to TD-DFT, one computes only excited state
energies by solving the TD-DFT response equations:16,29
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Here, Xi
Ia and Yi

Ia represent excitations and de-excitations from
occupied i to virtual orbital a for excited state I, while A and B
are excitation and de-excitation superoperators.29

Now, very often, one invokes the Tamm−Dancoff
approximation (TDA), by setting B = 0 and YI = 0. In such
a case, one has access to the auxiliary TD-DFT/TDA wave
function |ΨTDA

I ⟩= ∑iaXi
Ia|Φi

a⟩ and one can define a derivative
coupling through eq 10, just replacing ti

Ia with Xi
Ia.26 However,

without the TDA, no such formula exists. For the full TD-DFT
(RPA) problem (i.e., without TDA), we now understand that
two approaches are possible.
2.1.1. Pseudo-Wave Functions. The first approach is a

pseudo-wave function (PW) approach (which Li and Liu have
called an equation of motion approach24). To motivate this first
approach, one begins with an approximate TD-DFT ground-
state wave function of the form

∑|Ψ ⟩ ≈ |Ψ ⟩ + |Φ ⟩X Y
I

i
Ia

j
Ib

ij
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where |Φij
ab⟩ represents a Slater determinant with two occupied

orbitals ij excited to two virtual orbitals ab. The pseudo-wave
function for excited state I is then given by exciting a
combination of occupied orbitals k to virtual orbitals c, |ΨPW

I ⟩ ≈
∑kcXk

Icac
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GS ⟩. After a series of approximations,27,28 one
finds
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Equation 14 recovers all of the correct symmetries around a
conical intersection: (i) the derivative couplings lie in the
branching plane and (in the correct units) are perpendicular to
the diabatic state energy gradients; (ii) the derivative couplings
yield the correct Berry phase when integrated around a circular
loop enclosing the conical intersection. In the infinite basis
limit, in the vicinity of a conical intersection, this equation is
also consistent with the well-known Chernyak−Mukamel30

hypervirial equality.27,28

2.1.2. Matching Residues. Besides the pseudo-wave
function theory above, an alternative approach is to use
response theory directly. Here, the idea is to use quadratic
response theory applied to the exact many-body ground state
and to express the resulting wave function as a sum over many-
body states with residues. Then, by doing the same expansion
for the Kohn−Sham DFT ground state and comparing
residues, one can extract a meaningful formula for the derivative
coupling. For adiabatic TD-DFT, this logic produces a slightly
different response theory (RT) derivative coupling: dIJ

α,RT=
dIJ
α,PW+ ζIJ

α, where ζIJ
α is a new term arising specifically from

response theory.
While direct response theory is the only fully rigorous

approach toward solving TD-DFT problems, it turns out that in
this case, response theory does not yield a meaningful answer.
In particular, Li et al.31 and Ou et al.32 have independently
shown that ζIJ

α diverges at those random geometries for which
the two excited state energies differ by the energy of a third
excited state EI − EJ ≈ EK (for some other TD-DFT energy, EK;
see Figure 1). As such, formal quadratic response theory fails,33

and we may conclude that the pseudo-wave function approach
provides the most stable formula for derivative couplings
between adiabatic TD-DFT excited states in practice.

2.2. Translational Variance and Electron Translation
Factors

A second interesting feature that arises in the context of
derivative couplings is translational variance, that is, the fact
that ∑α=1

NAtomsdIJ
α ≠ 0. For example, for the LiH molecule, the DCs

between excited states 1 and 4 are given in Table 1.14 From this
data, one might conclude that the overlap between S4 and S1
changes differently as a function of nuclear geometry,
depending on whether one moves the Li atom or the H
atom. In fact, using the raw values in Table 1 directly in Tully’s
surface-hopping (nonadiabatic) dynamics algorithm34 would
lead to unphysical trajectories, whereby electronic relaxation
was exchanged for spurious jumps in total momentum for the
LiH molecule. That being said, Yarkony and the experts of
electronic structure have long recognized that derivative
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couplings do not obey translation invariance,35 and identities
have long been known to estimate the size of these nonzero
variations.
The conundrum above arises from the neglect of electronic

momentum. For a proper calculation of inelastic scattering, one
cannot ignore electronic momentum, such as the Born−
Oppenheimer picture would prescribe (given real electronic
wave functions). Moreover, dynamicists have long realized that,
for single atom trajectories or atom−atom collisions, the
translational invariance of derivative couplings and momentum
conservation can be restored using electron translation
factors.36 For large molecules, however, electron translation
factors can become awkward and method-dependent, and such
translation factors have not been universally applied.
Recently, in the course of investigating the analytic form of

derivative couplings, our research group made a very simple
connection between these electronic structure and dynamics
perspectives. According to standard analytic gradient theory, in
an atomic orbital basis labeled by μν, the essential matrix
elements are the nuclear derivatives of the one-electron
Hamiltonian operator (∂/∂Rα)hμν, the two-electron Coulomb
operator (∂/∂Rα)Πμνλσ, and the overlap operator (∂/∂Rα)Sμν.
For derivative couplings, a fourth matrix enters, the
antisymmetrized derivative of the overlap matrix, Sμν

A[α] = (1/
2)(⟨μ|(∂ν/∂Rα)⟩ − ⟨(∂μ/∂Rα)|ν⟩). For all electronic structure
methods we have studied (e.g., CIS, TDHF, TD-DFT), the SA

matrix elements always appear as ∑μνSμν
A[α]Dμν

IJ , where Dμν
IJ is the

one electron transition density matrix between electronic states
I and J.

In refs 14 and 37, we observed that, by including electron
translation factors and accounting for electronic momentum to
zeroth order, all terms involving Sμν

A[α] vanish. Moreover, it is
easy to show that ignoring all Sμν

A[α] terms restores translational
invariance and allows for momentum conservation dynamically.
Thus, we conclude that, if the derivative couplings dIJ

α are to be
used dynamically in nonadiabatic trajectories, one can and must
ignore all matrix elements involving the antisymmetrized derivative
of the overlap matrix.

3. DIABATIC COUPLINGS AND
ADIABATIC-TO-DIABATIC TRANSFORMATIONS

Like derivative couplings, diabatic couplings (also called
electronic couplings) have a long history in the
literature.38−51 The most important result about diabatic states
and diabatic couplings is the Mead and Truhlar52 curl
condition, showing that one cannot diabatize a given subset
of adiabatic states unless the adiabatic states obeyed the curl
condition. Thus, imagine that one wants to model the dynamics
of an electronic system subjected initially to a 5 eV pulse of
light. Whereas one would like to transform a given subspace of
Nstates adiabatic electronic states {ΦI} into a set of diabatic
electronic states {ΞA},

∑|Ξ ⃗ ⟩ = |Ψ ⃗ ⟩ ⃗ =
=

R R U R J N( ) ( ) ( ) 1 ...
J

N

J JAA
1

states

states

(15)

it is usually impossible to construct an adiabatic-to-diabatic
(ATD) transformation, UJA, globally (as a function of nuclear
position, R⃗).
Thus, we are left with the task of computing inexact ATD

transformations, for which there has been ever increasing
interest over the last 30 years or so. Several flavors of such
diabatization exist. One flavor of ATDs goes under the title
configurational uniformity and the 4-fold way.38−42 The basic
premise here is to set up molecular orbitals and then, with such
orbitals, construct many-body configurations that do not
change over configuration space. Another flavor falls under
the title “Block Diagonalization”.43,44 The basic premise here is
to define a set of target diabatic states (using chemical
intuition) and then construct such diabatic states by minimizing
the distance to those target states.
3.1. Localized Diabatization

One of the most appealing ideas for diabatization is so-called
“localized diabatization”, whereby one constructs an ATD by
localizing charge or excitation energy. Two basic frameworks
exist for performing such a transformation. On the one hand,
one can guess fragments and localize according to those
fragment definitions. Examples include fragment charge
diabatization47 and fragment energy diabatization.49 On the
other hand, one can use some physical observable53 to
construct an ATD. The earliest and most important example
of such a transformation was the generalized Mulliken−Hush
approach (GMH) of Cave and Newton.45,46 GMH prescribes
that, for a two state electron transfer (ET) problem, one should

build an ATD by diagonalizing the operator μ⎯→̂ ·w⃗. Here, μ⎯→̂ =
(μ̂x, μ̂y, μ̂z) is the dipole operator, and w⃗ = (wx, wy, wz) is the
dipole direction between adiabats 1 and 2, w⃗ = μ⃗11 − μ⃗22;

54 the
results of the GMH procedure have often been very good.55

Our recent work in diabatization has focused on under-
standing the physical origins of the GMH transformation and
extending GMH to the case of many charge or energy transfer

Figure 1. Derivative couplings (DCs) between the first, S1, and fourth,
S4, excited states of LiH as calculated by TDHF. Note that the pseudo-
wave function (PW) and response theory (RT) formalisms mostly
agree, but the RT matrix elements blow up around 1.9 Å “by accident”
when E4 − E1 = E1. See ref 32. For now, the PW approach is the only
stable means to calculate derivative couplings between TD-DFT
excited states.

Table 1. Derivative Couplings at the CIS/cc-pVDZ Level of
Theory in Units of Inverse Bohr Radiusa

atom derivative coupling

H 0.0479
Li −0.1466

aThe LiH distances is 1.618436 Å. Formally, pushing the Li atom is
not equivalent to pulling the H atom, but this translational distinction
can be misleading.
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centers. In practice, our approach has connected the notion of
ATDs with standard 50-year-old techniques from orbital
localization56−58 but now applying them to the many-body
problem.
To extend GMH beyond the two-state problem, the natural

generalization is Boys localization, whereby one constructs
UBoys by maximizing the distance between charge centers
according to

∑ μ μ= |⟨Ξ | ⃗|Ξ ⟩ − ⟨Ξ | ⃗|Ξ ⟩|f U( )
A B

A A B BBoys
,

2

(16)

where μ⃗ is the dipole moment. We have shown that eq 16 can
be physically motivated by assuming a fictitious, polar solvent
degree of freedom that mixes together the nearly degenerate
adiabatic electronic states of an isolated molecular system, thus
producing charge localized diabatic states.59 For the case of
Boys localization, one assumes that the solvent is polarized in
one direction in real space.
For the case of CIS or TD-DFT excited states, Boys

localization can be patched up to treat electronic excitation
transfer (EET) or triplet spin transfer (TT) by separating the
occ−occ and virt−virt parts of the dipole operator and
summing these components separately:

∑

∑

μ μ

μ μ

= |⟨Ξ | ⃗ |Ξ ⟩ − ⟨Ξ | ⃗ |Ξ ⟩|

+ |⟨Ξ | ⃗ |Ξ ⟩ − ⟨Ξ | ⃗ |Ξ ⟩|

f U( )
A B

A A B B

A B
A A B B

BoysOV
,

occ occ
2

,
virt virt

2

(17)

BoysOV localized diabatization proposes to separately localize
both the particle and hole of an exciton. Though this BoysOV
formalism has no simple physical motivation based on solvent,
we have found that it does produce intuitively correct diabatic
states with small derivative couplings (see below). Interestingly,
recent work by Hoyer and Truhlar has also sought to extend
Boys localization (which uses the dipole moment only) through
the use of the quadrupole moment (but at the cost of breaking
translational invariance).60

Beyond Boys localization, an even better approach for
localized diabatization is the Edmiston−Ruedenberg59 trans-
formation. Again, in parallel with the ER orbital localization,58

ER localized diabatization maximizes the self-interaction energy
of each diabatic state:

∑

∑ ϕ ϕ ϕϕ

=

≡ ⟨Ξ | |Ξ ⟩⟨Ξ | |Ξ ⟩ |† †

f R

a a a a

U( )

( )

ER
A

AAAA

pqrsA
A p q A A r s A p q r s

(18)

RAAAA is defined by the right-hand side of eq 18, and (ϕpϕq|
ϕrϕs) = ∫ dr1∫ dr2ϕp(r1)ϕq(r1)[1/(|r1−r2|)]ϕr(r2)ϕs(r2) is the
two-electron integral between four molecular orbitals. ER
localized diabatization can be physically motivated by assuming
the existence of a fictitious solvent following linear response, so
that one is merely maximizing the sum of the solvation energies
for each diabatic state. As a general ATD approach, ER
localization can be applied to all types of nonequilibrium
transfer, including electron transfer (ET), triplet transfer (TT),
and electronic excitation transfer (EET). ER is somewhat more
expensive than Boys localization, however, in practice.
Lastly, let us mention a few words about the effect of real

solvent (as opposed to ficitious solvent) on diabatic couplings.
Cave and Newton have shown that solvent can alter the

effective diabatic coupling between molecules,61 sometimes
dramatically.62 These findings remind us that, when modeling
electron transfer in the condensed phase, especially inter-
molecular electron transfer, all diabatization must include
nearby solvent (either explicitly62 or, at least, through a
polarized continuum model61). For a review, see ref 63.

3.2. “Small” Quasi-diabatic Derivative Couplings?

Since strictly diabatic states do not exist and derivative
couplings can be a pain to construct, there has not been a
long history in the literature of evaluating the sizes of derivative
couplings for quasi-diabatic states. Notably, however, recent
work by the Yarkony group64 has directly tackled the size of the
derivative couplings for quasi-diabatic states for reasonably
sized molecules.
In our research group, we have consistently sought quasi-

diabatic states that capture the physical character of the stable
or metastable states of electronic systems in condensed
environments.59 That being said, although such states need
not necessarily have infinitesimal derivative couplings, their
derivative couplings must be fairly small. Thus, one means to
confirm the validity of localized diabatized states is to compute
their derivative couplings. To that end, ref 65 examines how
one can use analytic gradient theory to calculate derivative
couplings between Boys-localized diabatic states and concludes
definitively that the quasi-diabatic states have negligible
coupling.65,66 This conclusion was predicted long ago by
Yarkony who showed that most rediagonalizations of adiabatic
states should eliminate the divergence of derivative couplings
around conical intersections.53 Armed with the knowledge that
localized diabatic states are primarily coupled through diabatic
(and not derivative) couplings, one can safely use localized
diabatic states in standard Marcus (perturbation) theory
calculations.67,68

3.3. Constrained Density Functional Theory

Before finishing this section, we mention that there has been an
interesting push in recent years to construct diabatic states
directly with constrained DFT69,70 and thus bypass the
impossibility of exact diabatization. This approach has had
success treating electron transfer in mixed valence com-
pounds,70,71 and there has been some progress in treating
spin transfer.72 Recent research has focused on extending
CDFT to excited states through the use of configuration
interaction on top of CDFT ground states.73 Because, at
bottom, CDFT requires predefined definitions of fragments
and the resulting diabatic states will not be orthogonal, CDFT
is most stable for treating intermolecular (rather than
intramolecular) nonadiabatic processes. For a recent review of
CDFT, see ref 74.

4. APPLICATIONS IN OUR RESEARCH GROUP
The preceding discussion has reviewed recent advances to the
theory of derivative couplings and diabatic couplings in the
context of nonadiabatic dynamics. We now highlight a few
applications of these methods.

4.1. Benzaldehyde and Conical Intersections75

One application of the above theory has been to the molecule
benzaldehyde,75 which exhibits strong phosphorescence ex-
perimentally. There are two low lying triplet excited states: T1 is
an n → π* state and T2 is a π → π* state that are mixed
together around a low-energy conical intersection (CI).76 Using
Boys and ER diabatization, in combination with TD-DFT and
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Marcus theory, we were able to predict rates of intersystem
crossing and phosphorescence that roughly matched experi-
ment (see Figure 2). Furthermore and most importantly, we

demonstrated that Boys and ER localization give nearly exactly
the correct mixing angle in the vicinity of the T2/T1 CI, as
shown in Figure 3. The dipole difference between these two

states is reasonably large (3.22 D) so that T2/T1 transfer can
almost be considered a weak example of photoinduced electron
transfer (ET). To our knowledge, this was the first instance
where explicitly localized diabatization has been examined for a
CI involving a molecule with more than a few atoms (see
Yarkony’s earlier work on CH2 using the dipole moment77).
Our results suggest that black box locally diabatic representa-

tions near conical intersections may play an important role in
understanding nonadiabatic dynamics.

4.2. Energy Transfer and the Closs Systems

A second application of these methods has been to the Closs
EET systems,78,79 which have been studied extensively in our
research group, through both diabatic couplings and derivative
couplings. The Closs molecules are a set of donor−acceptor
compounds that highlight many features of intramolecular
triplet energy transfer (TT), see Figure 4.80

A complete analysis of the Closs compounds requires all of
the tools listed above to construct both diabatic and derivative
coupling matrix elements. On the one hand, most of the Closs
molecules shown in Figure 4 are rigid (except compound M)
and can be studied in the framework of perturbation theory
(Marcus theory). To that end, Figure 4 shows the computed
triplet transfer rates versus the experimentally observed rates.
The theoretical rates were computed using Boys localization, a
reorganization energy around 0.8 eV, and a driving force of
roughly 0.6 eV (see ref 81). For the rigid molecules, Marcus
theory works very well.
On the other hand, the methyl-bridged species (compound

M) in Figure 4 is floppy and cannot be studied with Marcus

Figure 2. Schematic of the dynamics of photoexcited benzaldehyde
(reproduced from ref 75). After photoexcitation into the S1 state, there
is a quick intersystem crossing (ISC) into the T2, π → π* state,
followed by internal conversion through a conical intersection to the
T1, n → π* state, and finally phosphorescence to the ground state.
Using Boys (eq 16) or ER (eq 18) localized diabatization, one can
calculate accurate rates of ISC and phosphorescence.

Figure 3. Mixing angles around the T1−T2 conical intersection in the
g−h plane for benzaldehyde (reproduced from ref 75). Note that Boys
(eq 16) and ER (eq 18) localized diabatization recover nearly the exact
mixing angle (the latter obtained from fitting the local potential energy
surface). This data strongly verifies the validity of localized
diabatization approaches.

Figure 4. A plot of experimental versus theoretical energy transfer
rates, kTT (as computed with Marcus theory and BoysOV localized
diabatization [eq 17]), for the Closs EET molecules. See ref 81 for
more details.
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theory. Figure 5 shows the fluctuations in the diabatic coupling
as a function of geometry interpolated between the donor and

acceptor optimized geometries; we also show the initial and
final geometries, which are highly displaced. Clearly, when an
excitation transfers from the donor to the acceptor, the
reorganization energy is concentrated in torsional motion (and
the torsional motion also strongly modulates the diabatic
coupling82,83).
A careful study of the M molecule requires a fully

nonadiabatic dynamics calculation. We have performed such a
calculation with augmented fewest switches surface hop-
ping34,84,85 and have analyzed the resulting trajectories, both
through a lens of adiabatic states and through a lens of diabatic
states. First, through a lens of adiabatic states, Figure 6 shows
that when the derivative couplings get large, they exhibit
nonzero circulation, which proves the existence of a
dynamically important conical intersection. Second, in Figure
7, we plot the “g” and “h” vectors86 around the conical
intersection using BoysOV localized diabatization. Perhaps
surprisingly, the g vector is not torsional, showing that the local
nonadiabatic dynamics near the crossing point can be very
different from the overall classical (adiabatic) motion far away
from the crossing point.

5. DISCUSSION AND OPEN QUESTIONS
Before finishing this Account, it seems natural that we should
address the outstanding challenges remaining in electronic
structure at the intersection of nonadiabatic dynamics (beyond
the failure of adiabatic TD-DFT quadratic response theory, as
mentioned in section 2.1.2).
5.1. A Dense Manifold of Diabatic States

While Boys and ER localized diabatization are convenient tools
for solving many problems in condensed phase electronic
dynamics, these methods are not universally applicable and
cannot be applied in an entirely black box fashion. Recall that

Boys and ER diabatization are based physically around the
concept that nearly degenerate electronic states59 can be mixed
together by a fictitious, strong solvent degree of freedom.
Unfortunately, in practice, one may not be able to easily isolate
“nearly degenerate electronic states”. Instead, one might find a
manifold of many electronic states with large energy differences
between some adiabats (perhaps, as large as 5 eV). In such a
case, prescribing Boys or ER localization will often lead to
overmixing and yield unphysically large diabatic couplings.
Moreover, as nuclear geometries change, the character of the

Figure 5. A plot of donor−acceptor diabatic coupling interpolated as a
function of nuclear geometry. Here, we interpolate between the donor
and acceptor geometries for the methyl-bridged Closs “M” molecule.
The diabatic coupling is computed with BoysOV localized
diabatization (eq 17). See ref 9 for more details. We also plot the
electronic excitation density at initial and final geometries. Note that
the excitation has moved from donor to acceptor while the molecular
geometry has twisted.

Figure 6. Plot of the derivative couplings (in black) in the branching
plane for the Closs M-molecule as studied by surface hopping
dynamics. Each circle represents the projection of the nuclear
coordinates (at different time steps in a surface hopping calculation)
into the branching plane. The circle radius is inversely proportional to
the distance from the branching plane, and the circle color represents
increasing time from red to blue. For this trajectory, the molecule
enters from the right and passes extremely close to the conical
intersection before turning around and exiting back on the right. The
nonzero curl proves definitively the existence of a conical intersection.
See ref 9 for more details.

Figure 7. The g (green) and h (red) vectors for the conical
intersection in the Closs M molecule, as calculated by BoysOV
localized diabatization (eq 17). Note that the h vector field has been
scaled up by a factor of 50. Most of the nuclear displacement in the
dominant g direction is in the plane of the rings, suggesting that
torsional motion, although important for reaching the conical
intersection, is not the dominant motion at the conical intersection.
See ref 9 for more details.
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first N adiabatic electronic states can change and the solutions
to eq 16 or 18 can jump between minima (leading to
discontinuous, unphysical diabatic potential energy surfaces).
Ideally, if one diabatizes the first 10 electronic states, one would
like to be confident that (almost everywhere) the first 5 diabatic
states are smooth and accurate.
To improve upon these unfortunate limitations of ER/Boys

localized diabatization, new methodologies and frameworks will
be needed. We have offered one approach to solve this problem
(entitled ER-ϵ) that explicitly takes solvent character and
temperature into account. The basic idea of ER-ϵ is to minimize
the free energy of an electronic system plus its corresponding
classical bath of solvent assuming both (a) linear response for
the bath and (b) a slow solvent characterized by a single
dielectric constant, ϵ. The precise functional form is as follows:

∑ β= − ⟨Ξ | |Ξ ⟩ −‐ϵ
=
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where β = 1/(kT), C is the Pekar factor, and RAAAA is the self-
interaction energy of the solute electrons (see eq 18). Using eq
19, one finds the correct limiting cases: strong mixing of the
gas-phase adiabats in the case of high temperature and weak
mixing in the case of small Pekar factor (i.e., weak solvent).
Moreover, all indications are that the ER-ϵ algorithm should
produce diabatic states where both the derivative and diabatic
couplings are consistently small, in the spirit of an optimal
diabatic basis considered by Michael Herman87,88 and Yeganeh
and van Voorhis.89

Nevertheless, the ER-ϵ approach is not a panacea. While ER-
ϵ is certainly more robust than ER alone, the method does not
eliminate all necessary overmixing. The problem of overmixing
ATDs is not fully solved.

5.2. Diabatic State Gradients On the Fly

One drawback from using localized diabatization is the
difficulty in obtaining diabatic gradients, in terms of both
computational cost and numerical stability. In principle, one
must first compute adiabatic gradients and derivative couplings
and then explicitly construct the gradient of the diabatization
transformation. A simpler approximate (but more stable)
approach is to make a strictly diabatic assumption and assume
that our localized diabatic states have no derivative couplings,
⟨ΞA|(∂/∂R

α)ΞB⟩ = 0.66 In such a case, one finds a much
simplified (but still very accurate) expression66 for the diabatic
gradient. Future work will no doubt explore the general validity
of this strictly diabatic ansatz. Assuming that the localized
diabatization yields states for which the strictly diabatic
approximation holds, one future challenge will be how to
best use approximate gradients to perform diabatic dynamics.
Obviously, because it will not be exact, a naive simulation of
diabatic dynamics will not conserve energy. The interface of
diabatization algorithms with dynamics may well be a fruitful
area of study in the future.

6. CONCLUSIONS
Electronic structure theory is still growing to meet the needs of
nonadiabatic dynamics. This Account has highlighted recent
progress toward computing the necessary matrix elements that
couple different electronic states: diabatic couplings between
diabatic states and derivative couplings between adiabatic states.
Several open questions remain. Looking forward, given the
current interest in photoexcited dynamics and the plethora of

practical challenges, we expect many future developments
ahead at the intersection of electronic structure theory and
chemical dynamics.
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